Multi-walled carbon nanotube-supported metal-doped ZnO nanoparticles and their photocatalytic property

نویسندگان

  • C. S. Chen
  • T. G. Liu
  • L. W. Lin
  • X. D. Xie
  • X. H. Chen
  • Q. C. Liu
  • B. Liang
  • W. W. Yu
  • C. Y. Qiu
چکیده

A simple and versatile approach has been developed to synthesize multi-walled carbon nanotubes/metal-doped ZnO nanohybrid materials (MWNT/M-doped ZnO) by means of the co-deposition method. The experimental results illuminate that MWNTs can be modified by metal-doped ZnO nanoparticles at 450 °C, such as Mn, Mg, and Co elements. Furthermore, the MWNT/Mg-doped ZnO hybrids have been proven to have a high photocatalytic ability for methyl orange (MO), in which the degraded rate for MO reaches 100 % in 60 min. The enhancement in photocatalytic activity is attributed to the excellent electriconal property of MWNTs and Mg-doping. The resultant MWNT/Mg-doped ZnO nanohybrids have potential applications in photocatalysis and environmental protection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-walled carbon nanotubes supported Cu-doped ZnO nanoparticles and their optical property

Multi-walled carbon nanotubes (MWNTs)/Cu-doped ZnO composite powders were prepared by co-precipitation method, and were characterized by X-ray diffraction, electron microscopy, fluorescence spectrum, and ultraviolet spectrum. Experimental results show that the MWNTs can be modified by Cu-doped ZnO nanoparticles with hexagonal wurtzite structure after annealed at 450 °C, and the nanoparticle siz...

متن کامل

Increasing the hydrogen storage capacity of single-walled carbon nanotube (SWNT) through facile impregnation by TiO2, ZrO2 and ZnO nanocatalysts

Various nanocomposites of TiO2, ZnO and ZrO2 decorated single wall Carbon nanotubes (SWNTs) were fabricated by facile and template free continuous ultrasonication/stirring of virgin metal oxide nanopowders and SWNTs in ethanol under UV-light illumination. The TEM micrographs showed that nanoparticles (NPs) were uniformly dispersed and bonded on the surface of SWNTs. The results of XRD as well a...

متن کامل

Investigation of Photocatalytic Activity of Nd-Doped ZnO Nanoparticles Using Brilliant Green Dye: Synthesis and Characterization

An Nd doped ZnO (1-5%) photocatalyst was successfully synthesized via chemical co-precipitation method. The optical property, nature, and morphology of the synthesized nanoparticles were analyzed by UV-Visible, XRD, and FESEM respectively. XRD study reveals that Nd has been effectively incorporated in the ZnO lattice in the lower level dosage; however, the crystalline nature has been distor...

متن کامل

Synergistic Effect of ZnO Nanoparticles and Carbon Nanotube and Polymeric Film on Electrochemical Oxidation of Acyclovir

A simple and selective carbon paste electrode has been developed for the electrochemicaldetermination of acyclovir (ACV). This electrode was designed by incorporation of multiwalledcarbon nanotubes (MWCNTs) and ZnO nanoparticles into the carbon paste matrix,and then poly (o-aminophenol; OAP) film were subsequently electropolymerized on it. Thesurface structure of nanoparticles were characterize...

متن کامل

Synergistic Effect of ZnO Nanoparticles and Carbon Nanotube and Polymeric Film on Electrochemical Oxidation of Acyclovir

A simple and selective carbon paste electrode has been developed for the electrochemicaldetermination of acyclovir (ACV). This electrode was designed by incorporation of multiwalledcarbon nanotubes (MWCNTs) and ZnO nanoparticles into the carbon paste matrix,and then poly (o-aminophenol; OAP) film were subsequently electropolymerized on it. Thesurface structure of nanoparticles were characterize...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2013